First introduced in the 1980s, smart cameras or “smart sensors” combine lenses, embedded sensor, processors, interfaces and software together into small, all-in-one vision systems. Besides being inexpensive, their primary advantage is having the on-board computational ability to solve a vision task independently without connection to a host PC. A compact form factor also makes smart cameras easy to fit in tight spaces or to retrofit into an existing process. Since they have few moving parts and do not generate high temperatures, maintenance costs are kept low. Smart camera systems are also typically provided with GUIs for developing a machine-vision inspection program with little or no programming. Smart cameras that integrate fast CPUs may even allow the use of familiar off-the-shelf software packages designed for host-based systems.
It is important to point out that while many consumer cameras have built-in signal and image processing power this does not qualify them as “smart cameras.” What differentiates consumer-level cameras from true smart cameras is their purpose. A smart camera uses an application specific information processing block or “ASIP” running analytics algorithms to make decisions for other devices in an automated system. On the other hand, a consumer camera with embedded processing is solely for personal enjoyment.
First introduced in the 1980s, smart cameras or “smart sensors” combine lenses, embedded sensor, processors, interfaces and software together into small, all-in-one vision systems. Besides being...
read more » Close window First introduced in the 1980s, smart cameras or “smart sensors” combine lenses, embedded sensor, processors, interfaces and software together into small, all-in-one vision systems. Besides being inexpensive, their primary advantage is having the on-board computational ability to solve a vision task independently without connection to a host PC. A compact form factor also makes smart cameras easy to fit in tight spaces or to retrofit into an existing process. Since they have few moving parts and do not generate high temperatures, maintenance costs are kept low. Smart camera systems are also typically provided with GUIs for developing a machine-vision inspection program with little or no programming. Smart cameras that integrate fast CPUs may even allow the use of familiar off-the-shelf software packages designed for host-based systems.
It is important to point out that while many consumer cameras have built-in signal and image processing power this does not qualify them as “smart cameras.” What differentiates consumer-level cameras from true smart cameras is their purpose. A smart camera uses an application specific information processing block or “ASIP” running analytics algorithms to make decisions for other devices in an automated system. On the other hand, a consumer camera with embedded processing is solely for personal enjoyment.